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Abstract: In this work the source simulation technique was used to calculate the scattering of
a plane wave by a circular cylinder with radial or elliptical transverse section. The extent to
which the simulated field reproduces the original field depends on the degree of
correspondence between the simulated and the given boundary conditions. Numerical
simulations have shown that: 1) the shape of the auxiliary surface, 2) the number of sources,
and 3) the way the sources are distributed are the most relevant parameters to ensure an
accurate solution for the problem. In the case of the single-layer method, sources, should not
be positioned close to the surface or to the center of the body, because the problem becomes
ill-conditioned. The auxiliary surface and the scatterer should be as similar as possible in
order to minimize the boundary error. With respect to the number of sources (N), there are
two opposite effects: 1) if (N) is too small, the sound filed is not reproduced accurately; 2) if
(N) is too lage, comuting timeincreaes and solution accuracy decreases. The method breaks
down when excitation frequency coincides with the eigenfrequencies of the space formed by
the auxiliary surface.

Keywords: scattering, eigenfrequencies, auxiliary surface.

1. INTRODUCTION

The mathematical treatment of radiation and acoustic scattering represents a very old
and much studied problem by mathematical physics (Lord Rayleigh, 1945; P.M. Morse,
1948). Radiation and scattering are present in all ondulatory phenomena (elastic waves in
rigid bodies, electromagnetic waves, surface waves on the water, etc). The present study,
however, deals only with “pure” acoustical waves, that is, acoustical waves in gases or
liquids. Another important limitation is that all steps of the solution of the problem are
considered linear. Consequently, the superposition principle is valid.

2. DESCRIPTION OF THE SCATTERING PROBLEM AND THE SOURCE
SIMULATION TECHNIQUE

Considering a harmonic wave with sound pressure amplite ep  in an infinite and

homogeneous space E which encounters in its displacement the body K , internal space is



defined by I , the scttered wave by sp and the surface of the body by S .  Over the surface of

the body the unitary vector n
�

 is defined (see fig. 1).
Pressure and  velicity of the particle can be determined as the result of the sum of the

components ep and sp . Respectively
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Figure 1: Geometry of the acoustic scattering problem

The complex sound pressure tp has to satisfy the Helmholtz equation
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in E , where ck /ω= is the wave number, ω is the circular frequency, c the speed of sound.
and ∆  is the Laplace operator. Since sound scattering into the three-dimensional space is
considered, the pressure tp has to satisfy the Sommerfeld radiation condition
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wich can be interpreted as a boundary condition at infinity. Here,
2
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1 xxxxr ++== denotes the distance from x to the origin, where we represent points in

space by simple letters like )( 321 xxxx ++= . Solutions of the Helmholtz equation in E wich

also satisfy the radiation equation are called wave functions. To get a complete description of
the problem, boundary conditions on the surface are needed. For the sacke of simplicity we
only consider the so-called Neumann boundary value problem where the normal velocity and
therefore the gradient of pressure
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is prescribe. Here ρ is the density and n∂∂ / is the derivative in the direction of the outward
normal.

The basic idea of the source simulation technique consists in replacing the scatterer
body by a system of sources placed in the interior of the body. The sources are denoted by

),( yxφ , where x is one arbritary point in space and y is the position of the source singularity,
i.e the location of the source point. Now, due to the source simulation technique in its most
general form, it can be assumed that pressure can be represented by
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where Q is a region which is fully contained in I and embodies all sources. ( )yA  is the yet
unknown source density which gives every source a certain strenght. Every sigle function

( )yx,φ  can consist of a finite or infinite sum of elementary sources like e.g. monopoles,
dipoles, etc. The volum integral in “Eq.(2.5)” reduces to a surface integral if the region Q is a
surface. Using line sources, a contour integral is obtained, and finally the integral turns into a
finite sum if isolated point sources are used. The system functions ( )( )Qyyx ∈,φ  will be

called the source system. All functions of the source system satisfy “Eq.(2.2)” by definition. If
the source system also satisfies the boundary condition “Eq.(2.4)” on the surface S , then the
sound field generated by the scatterer body and the field produced by the source are identical.
This follows from the unique solvability of the exterior problem descrebed by “Eq.(2.2) and
(2.3)” together with the local boundary conditions “Eq.(2.4)” (D. Colton an R. Kress, 1983).
Hence such a source system will be called an equivalent source system. Consequently, the
exact solution of the scattering (or radiation) problem can be found if it is possible to
construct na equivalente source system. Solutions of the Helmholtz equation together with the
radiation condition, especially in standar coordinate systems like spherical coordinates, are
well-known. The problem is  to satisfy the boundary conditions since the surface S normally
has a complicated geometry for pratically relevant problems, and analytical solutions are not
available. In these cases only na approximate solution can be obtained, which means that the
source system will satisfy the boundary conditions in an  aproximate sense.

3. INFLUENCE PARAMETERS

The parameters that influence the performance of the method, that is, the capacity of
the method to reproduce boundary conditions are the following: the type and number of
sources, their posiotioning in the interior of the body, the shape of the source surface and the
existence of critical frequencies.

3.1 Type of sources

By definition the sources must be radiating wave functions. It is convenient to work
with available analytical functions. Only solutions solutions of the Helmholtz equation in
separable coordinate systems can be constructed explicitly (P.M. Morse and H. Feshbach,
1953). In practice, spherical radiators (for three-dimensional problems) or cylindrical
radiators (for two dimensional problems). A few attmpts to work with spheroidal functions
can be found in the literature (R.H. Hackmann, 1984).

3.2 Location of the sources

A general assumption of the source simulation technique is that the sources must be
located in the interior of the closed surface S . It is also possible to put sources on the
boundary itself. But this leads to boundary integral equations and to the corresponding BEM,
which are not topics of this paper. For the choice of the source location, essentially two
alternatives are possible: 1) only a few source locations are chosen, but at these locations a
source with increasing order is used; or 2) a continuous source distribution of simple sources
on na inner auxiliary surface is employed. The constrast between boht method is the greatest



if a closed auxiliary surface with a layer of monopoles is chosen as one extreme and a infinite
series of multipoles at only one source location as the other extreme. The first method is
called “the single-layer method” and the second “the one-point multipole method”. If  the
geometry of the body is spherical or cylindrical (or not far from those), the use of the one-
point multipole is recommended with the multipol located in the center of the body. This
procedure facilitates the convergence of the wave functions and reduces computing time. On
the other hand, sources positioned very close to the center when using the single-layer method
tend to cause thte matrix of linerarequations to became more ill-conditioned, leading to an
increseased surface error (see fig. 2 and fig. 3). If the sources are positioned very close to the
boundary, the accuracy will deteriorate due to the inadequate integration of the source
singularity. There is again  substancial increase in computing time due to the increase in the
number of sources necessary in order to minimize surface error. Our findings are not in
agreement wiht Bobrovnitzkii and Tomilina (1990), who say that the source surface should be
close to the body surface in order to improve the accuracy of the problem reducing the
boundary error. This is only correct when kR  is very large.

Figure 2: Error when satisfying the boundary error as function of the position of the
source surface with radius ( )qr  and a circular cylinder with radius 73.0, =kRR .

Figure 3: Condition number in [dB] as a function of the position of  the source surface
with radius ( )qr  and a circular cylinder of  73.0, =kRR .

3.3 Number of sources



The number of sources is influenced by several parameters, but mainly by the
geometry of the body an the type of the source. In the determination of the number of sources,
with respect to the single-layer method considering a circular cylinder, an expression was
intended which would give the smallest number of monopoles necessary to satisfy the
boundary conditions. Additionally, the position ( ) Rqr /  (see fig. 3) of the source surface
should also comply with the assumption of a minimal number of monopoles. The simulation
leads us to the following
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where β  is anknown factor, and R is the cylinder radius. This expression establishes a
relationship between the wave number, the size of the body, and the number of mononopoles.
With the simulation the following values have been found for:

a) for ( ) 164.0/46.173.0 =→=≤≤ βRqrandkR

b) for ( ) 85.0/66.383.1 =→=≤≤ βRqrandkR

c) for ( ) 66.0/33.758.4 =→=≤≤ βRqrandkR

d) for ( ) 48.0/7.010.2316.9 =→≤≤≤≤ βRqrandkR

3.4 Shape of the source surface

One aspect rarely conseidered in the utilization of the source simulation techniaque is
the shape of the source, that is,the shape of hte auxiliary surface over which the sources are
positioned (Zannin, 1996). The object of study here is a circular cylinder, and for the source
surface the following shapes have benn used: cylindrical and elyptical. Surface error could be
minimized and boundary condition satisfied in all tested cases. The number of monopole
sources needed grew in direct proportion to the deviation of the source surface from a circular
cylindrical shape.

A cylinder with elyptical transverse section was also used a second object of study.
The results obtained were very consistent as long as the source surface was identical with the
external surface (see fig. 4). For the case of a cylindrical source surface located within the
elyptical body, boundary condition could not be satisfied (see fig. 5). The elyptical body
required a significantly larger number of monopole sources in order to get boundary error
minimized.

Figure 4: Ellyptical cylinder with ellyptical source surface.



Figure 5: Ellyptical cylinder with cylindrical source surface

3.5 Critical Frequencies

There are frequencies, sometimes called fictitious eigenfrequencies at wich or close to
which the solution of the Helmholtz integral equation is non-unique. It is well known that the
boundary element method breaks down at these frequencies (Ochmann, 1990).

Jeans and Mathews (1992) have demonstrated that in the use of the source simulation
technique the critical frequencies corresponde to the eigenfrequencies of the internal space
formed by the closed source surface, when over this surface the boundary condition of
Dirichlet is considered.

The eigenfrequencies of a circular space with the Dirichlet condition over its surface
are represented by the roots of the Bessel function (E. Skudrzyk, 1971):
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where r is the radius of the source surface.
Nevertheless, other authors report that they have not observed the presence of inner

eigenfrequencies when utilizing the source simulation technique, both in the calculation of the
acoustic radiation and of the aocustic scattering. Part of the conclusions ot these studies are
cited in what follows: “The SUP solution does not appear to be affected by spurius internal
resonances which have plagued the integral formulations in the past (P.S. Kondapelli et. all,
1991)”; “The results for 1=R and 40483.2=k which is the smallest zero of the Dirichlet
eigenvalue for the circle, illustrate that there is no unique problem at the critical wave number
(R. Kress and A. Mohsen, 1986)”.

In this work we tried to identify the presence or absence of the eigenfrequencies.
Figure 6 shows the error when satisfying the boundary conditions close to and at the first
frequency of resonance of a circle: 4048255577.2=kr . It is fairly obvious that there is a
huge error at this frequency and that the problem formulation breaks down. In fig. 7 we have
the logarithm of the condition number. One important conclusion that can be drawn from
figures 6 and 7 is that resonance belongs to a very narrow range of frequencies. For  source
surfaces like a cylinder or a sphere resonance can be easily calculated and therefore avoided.
This is one of the advantages of the source simulation technique with respect to the boundary
element method. One question always present with respect to the source simulation technique
is  whether the ill-conditioning of the problem (see fig.2 and 3) is due to the eigenfrequencies
of the inclosed source surface. In fig. 8 the boundary error can be seen, calculated for the first
resonance of the circle 4048255577.2=kr , as a function of the number of sources. It can be
observed that the error is extremely large (see fig. 6), though remaining constant despite a
substancial increase in the number of sources: 20 to 150 monopoles. In ill-conditioned
problems the trend is toward na increase in the error na in the condition number when the
number o sources increases (A. Bogomolny, 1985). Therefore, one can conclude that the ill-



conditioning of the problem is a characteristic of the source simulation technique and is not
caused by the eigenfrequencies of the internal space formed by the source surface.

Figure 6: Boundary error close to and at the resonance frequency of a circle
( ) 4048255577.2=qkr

Figure 7: Logarithm of the condition number at the proximities of the first resonance
frequenz of a circle ( ) 4048255577.2=qkr

Figure 8: Influence of the number of monopoles on the boundary error for
( ) 4048255577.2=qkr



4. CONCLUDING REMARKS

The quality of the results obtained by the source simulation technique depends on the
relationship between some parameters. The most relevant of them are the: shape of the inner
source surface, the location of the sources at the source surface, and the number of sources. If
one of these parameters is inadequately chosen, this will negatively influence the development
of the whole numerical calculation.

In the case of the single-layer method, sources should not be positioned very close to
the center of the body, as in this case the condition number of the matrix grows rapidily,
meaning that it is becoming ill-conditioned. If the wave number is small, onde can position
the sources close to the center of the body. The advantage of doing so is in the use of a small
number of sources in order to minimize the boudary error, which is also translated into less
computing time. On the other hand, as the wave number grows, the sources are located closer
to the surface. However, the positioning of the sources should obbey a relationship between
the smallest dimension of the source surface and the largest dimension of the body under
study. For the case of a cylinder of radius R and a source of radius ( )qr , the relationship is

given by ( ) 9.0/ ≤Rqr . Above this value the method becomes very unstable due to the
occurence of singularities.

With respect to the shape of the source surface, number of the sources used there are
two opposing effects. If the number of sources is too small the acoustic field cannot be
reproduced with  precision. If the number of sources is too large, both computing time and
computational errors end up increasing. Numerical experiments led us to the conclusion that
the ill-conditioning of the problem is not caused by the eigenfrequencies of the source surface,
but it is a characteristic of the method itself. The method breaks down when the excitation
frequency coincides with the eingenfrequencies of the inner space formed by the source
surface. The numerical experiments have shown that the eigenfrequencies belong to a very
narrow band. This way, for non-complex surfaces such as sphere or a circle, they can be
easily calculated and avoided.

The greated disavantage in the use of the source simulation technique is in the fact that
rules for the positioning of the source surface are not known a priori.The positioning of the
source surface and in consequence of the sources themselves is based on the experience of the
programmer. Further research is necessary to investigate how the method performs with
complex surfaces. In that case the main question is about the shape of the source surface.
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